六年级数学上册牛吃草问题思维训练题

六年级数学上册牛吃草问题思维训练题


简介:
四个基本公式 ①草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数); ②原有草量=牛头数×吃的天数-草的生长速度×吃的天数; ③吃的天数=原有草量÷(牛头数-草的生长速度); ④牛头数=原有草量÷吃的天数+草的生长速度 1.牧场上有一片草地,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃几天? 20天时草地上共有草:10×20=200 10天时草地上共有草:15×10=150 草生长的速度为:(200-150)÷(20-10)=5 即每天生长的草可供5头牛吃。 原草量为:200-20×5=100 可供25头牛吃:100÷(25-5)=5(天) 2.一片草地,每天都匀速长出青草。如果可供24头牛吃6天,或20头牛吃10天吃完。那么可供19头牛吃几天? 6天时共有草:24×6=144 10天时共有草:20×10=200 草每天生长的速度为:(200-144)÷(10-6)=14 原有草量:144-6×14=60 可供19头牛:60÷(19-14)=12(天)