立即下载 | 限时 免费 下载 |
同类热门下载
简介:
【一】新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销量y1(盒)与售价x(元)之间的关系为y1=400﹣8x;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒.
(1)求甲、乙两种口罩每盒的进价分别为多少元?
【分析】设甲、乙两种口罩每盒的进价分别为x元、y元,由题意得方程组,求解即可.
解:设甲、乙两种口罩每盒的进价分别为x元、y元,由题意得:
4x+6y=260,5x+4y=220
解得:x=20,y=30.
∴甲、乙两种口罩每盒的进价分别为20元、30元.
(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时两种口罩的销售利润总和为多少?
【分析】设乙口罩的销售利润为w元,由题意得关于x的二次函数,将其写成顶点式,根据二次函数的性质可得乙口罩的售价及此时乙口罩的最大销售总利润,然后此时甲的销售利润进而求得两种口罩的销售利润总和.