人教版 | 九年级数学上册【圆周角定理】重难点题型6个(含答案)

2024-11-18
227
332.88 KB


简介:
题型1、圆周角定理 已知AB是⊙O的直径,CD是⊙O的弦,连接BD. (Ⅰ)如图①,连接OC,AD.若∠ADC=56°,求∠CDB及∠COB的大小; 解:∵AB是⊙O的直径, ∴∠ADB=90°, ∵∠ADC=56°, ∴∠CDB=90°﹣∠ADC=90°﹣56°=34°, 在⊙O中,∠COB=2∠CDB=2×34°=68° (Ⅱ)如图②,过点C作DB的垂线,交DB的延长线于点E,连接OD.若∠ABD=2∠CDB,∠ODC=20°,求∠DCE的大小. 解:∵OD=OB, ∴∠ODB=∠OBD, 即∠ODC+∠CDB=∠OBD, ∵∠ABD=2∠CDB,∠ODC=20°, ∴20°+∠CDB=2∠CDB, ∴∠CDB=20°, ∵CE⊥DE, ∴∠CED=90°, 在Rt△CDE中,∠DCE=90°﹣∠CDE=90°﹣20°=70°